

ELIZADE UNIVERSITY ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATION

2016 / 2017 ACADEMIC SESSION

COURSE CODE: CSC 430

COURSE TITLE: Queuing System **COURSE LEADER:** Dr. V. Akpan

DURATION: 2 Hours

HOD's SIGNATURE	

INSTRUCTION:

Candidates should answer any THREE (3) Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence

Students are permitted to use ONLY a scientific calculator.

1

- 1. (a) What is queuing theory?
 - (b) On the basis of Fig. 1 which depicts the elements of a basic queuing system, briefly discuss the following terms as they relate to queuing systems:
 - (i) Arrival
- (ii) Queue
- (iii) System capacity
- (iv) Queuing discipline
- (v) Service
- (iv) Output
- (c) Using suitable diagrams, briefly distinguish between open and closed queuing system with emphasis on which is limited and unlimited population.
- (d). Consider the timesharing system with a memory constraint shown in Fig. 2 where swapping may occur between interaction, so that a request may be forced to queue for a memory partition prior to competing for the resources of the central subsystem. The following actual measurement date was obtained by observing the timesharing workload on a

Arrival
Queue Service Output

Fig. 1: Elements of queuing systems for

system with several distinct workloads: Average number of timesharing user: 23 (N = 23)

Average response time perceived by a user: 30 seconds (R = 30)

Timesharing throughput: 0.45 interactions/second (X = 0.45)

Average number of timesharing requests occupying memory: 1.9 ($N_{in memory} = 1.9$)

Average CPU service requirement per iteration: 0.63 second ($D_{CPU} = 0.63$)

- (i) Compute the average think time of a timesharing user?
- (ii) On the average, how many users were attempting to obtain service (i.e. how many users were not think at their terminals)?
- (iii) On the average, how many much time elapsed between the acquisition of memory and the completion of an interaction?

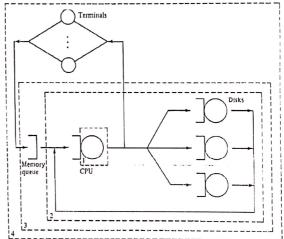
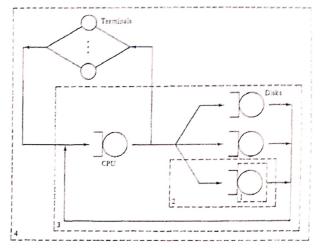



Fig. 2: Little's law applied to memory constrained

- (iv) What is the contribution to CPU utilization of the timesharing workload?
- 2. (a) (i) State the utilization law.
 - (ii) Starting from any known principle, show that the utilization law is $U = X \cdot S$ (where all symbols have their usual meaning).
 - (b) If we observe 8 arrivals during an observation interval of 4 minutes for which 8 completions were equally observed and the resource was busy for 2 minutes during that interval. Compute:
 - (i) Arrival rate
- (ii) Throughput
- (iii) Utilization,
- (iv) Average service requirement per request
- 3. (a) (i) State the Little's law.
 - (ii) Starting from any known principle, show that the Little's law is $N = X \cdot R$ (where all symbols have their usual meaning).

- (b) If a total of 2 request minutes of residence time are accumulated during a 4 minute observation interval in which 8 requests complete. Compute:
 - (i) Average number of requests, and
 - (ii) Average system residence time per request.
- 4. (a) (i) State three reasons why Little's law is considered an important law in queuing theory and queuing systems.
 - (ii) Briefly describe how the Little's law applies to the hypothetical timesharing system at the four different levels indicated by the four boxes in Fig. 3.
 - (b) Suppose that the resource is a disk and that the disk drive is serving 40 requests/second and that the average request requires 0.0225 seconds of disk service. Using the Little's law, compute the utilization of the disk.

- 5. (a) Suppose that the average number of requests present is 4 and that the disk is serving 40 requests/second. Using the Little's law, compute:
 - (i) The average time spent at the disk by a request.
 - (ii) The average queuing time of a request.
 - (iii) The average number of requests in the queue.
 - (b) Suppose that a system throughput is ½ interactions per second and that, on the average, there are 7.5 "ready" users. Using the Little's law, compute the average response time.
 - (c)(i) State the response time law.
 - (ii) Suppose that there are 10 users where the average think time is 5 seconds and the average response time is 15 seconds. Using the Little's law, compute the system throughput.
 - (iii) Suppose that a system has 64 interactive users where the average think time is 30 seconds and that the system throughput is 2 interactions/second. Compute the response time.